Since the recent success of Vision Transformers (ViTs), explorations toward transformer-style architectures have triggered the resurgence of modern ConvNets. In this work, we explore the representation ability of DNNs through the lens of interaction complexities. We empirically show that interaction complexity is an overlooked but essential indicator for visual recognition. Accordingly, a new family of efficient ConvNets, named MogaNet, is presented to pursue informative context mining in pure ConvNet-based models, with preferable complexity-performance trade-offs. In MogaNet, interactions across multiple complexities are facilitated and contextualized by leveraging two specially designed aggregation blocks in both spatial and channel interaction spaces. Extensive studies are conducted on ImageNet classification, COCO object detection, and ADE20K semantic segmentation tasks. The results demonstrate that our MogaNet establishes new state-of-the-art over other popular methods in mainstream scenarios and all model scales. Typically, the lightweight MogaNet-T achieves 80.0\% top-1 accuracy with only 1.44G FLOPs using a refined training setup on ImageNet-1K, surpassing ParC-Net-S by 1.4\% accuracy but saving 59\% (2.04G) FLOPs.
translated by 谷歌翻译
随着计算机视觉中深神经网络的显着进展,广泛研究了数据混合技术,以减轻培训数据量有限时降解概括的问题。但是,当前视觉工具箱中的混合策略尚未得到很好的组装。在本文中,我们建议\ texttt {OpenMixup},这是一个开放源代码的多合一工具箱,用于使用混音,用于监督,半手术和自我监督的视觉表示学习。它提供了一个集成的模型设计和培训平台,包括一系列主要的网络体系结构和模块,数据混合增强方法的集合以及实用的模型分析工具。此外,我们还在各种数据集上提供标准的混合图像分类基准,这加快了从业者在同一设置下的最新方法中进行公平比较。源代码和用户文档可在\ url {https://github.com/westlake-ai/openmixup}上获得。
translated by 谷歌翻译
Point cloud registration (PCR) is a popular research topic in computer vision. Recently, the registration method in an evolutionary way has received continuous attention because of its robustness to the initial pose and flexibility in objective function design. However, most evolving registration methods cannot tackle the local optimum well and they have rarely investigated the success ratio, which implies the probability of not falling into local optima and is closely related to the practicality of the algorithm. Evolutionary multi-task optimization (EMTO) is a widely used paradigm, which can boost exploration capability through knowledge transfer among related tasks. Inspired by this concept, this study proposes a novel evolving registration algorithm via EMTO, where the multi-task configuration is based on the idea of solution space cutting. Concretely, one task searching in cut space assists another task with complex function landscape in escaping from local optima and enhancing successful registration ratio. To reduce unnecessary computational cost, a sparse-to-dense strategy is proposed. In addition, a novel fitness function robust to various overlap rates as well as a problem-specific metric of computational cost is introduced. Compared with 7 evolving registration approaches and 4 traditional registration approaches on the object-scale and scene-scale registration datasets, experimental results demonstrate that the proposed method has superior performances in terms of precision and tackling local optima.
translated by 谷歌翻译
大坝水库在实现可持续发展目标和全球气候目标方面发挥着重要作用。但是,特别是对于小型水坝水库,其地理位置缺乏一致的数据。为了解决此数据差距,一种有前途的方法是根据全球可用的遥感图像进行自动水坝水库提取。它可以被认为是水体提取的精细颗粒任务,涉及在图像中提取水区,然后将水坝储层与天然水体分开。我们提出了一种基于新型的深神经网络(DNN)管道,该管道将大坝水库提取到水体分割和大坝储层识别中。首先将水体与分割模型中的背景土地分开,然后将每个水体预测为大坝储层或分类模型中的天然水体。对于以前的一步,将跨图像的点级度量学习注入分段模型,以解决水域和土地区域之间的轮廓模棱两可。对于后一个步骤,将带有簇的三重态的先前引导的度量学习注入到分类模型中,以根据储层簇在细粒度中优化图像嵌入空间。为了促进未来的研究,我们建立了一个带有地球图像数据的基准数据集,并从西非和印度的河流盆地标记为人类标记的水库。在水体分割任务,水坝水库识别任务和关节坝储层提取任务中,对这个基准进行了广泛的实验。将我们的方法与艺术方法的方法进行比较时,已经在各自的任务中观察到了卓越的性能。
translated by 谷歌翻译
在许多情况下,需要精确的机器人操纵任务(插入,拧紧,精确选择,精确选择)。以前的方法在此类操作任务上实现了良好的性能。但是,这种方法通常需要乏味的校准或昂贵的传感器。 3D/RGB-D摄像机和扭矩/力传感器增加了机器人应用的成本,并且可能并不总是经济的。在这项工作中,我们旨在解决这些问题,但仅使用弱化和低成本的网络摄像头。我们提出了双眼对准学习(BAL),可以自动学习眼手协调和点对准能力以解决这四个任务。我们的工作重点是与未知的眼睛协调合作,并提出了自动执行眼镜校准的不同方法。该算法在模拟中进行了训练,并使用实用管道实现SIM2Real并在真实机器人上进行测试。我们的方法在四个任务上成本最低,取得了竞争性的效果。
translated by 谷歌翻译
多视图点云注册在3D重建中至关重要。由于从不同角度捕获的点云之间存在密切的连接,因此如果正确利用这些连接,则可以增强注册性能。因此,本文将注册问题建模为多任务优化,并提出了一种新颖的双通道知识共享机制,以有效,有效地解决问题。多视点云注册作为多任务优化的建模是双重的。通过同时考虑两个点云的局部精度以及所涉及的所有点云带来的全局一致性,得出了具有自适应阈值的健身函数。还定义了共同进化搜索过程的框架,以同时优化属于相关任务的多个健身函数。为了提高解决方案质量和收敛速度,拟议的双通道知识共享机制发挥了作用。任务内的知识共享引入了求解更简单的帮助任务,并且在辅助任务和原始任务上共享有用的信息,从而加速了搜索过程。任务间知识共享探讨了原始任务中埋葬的共同点,旨在防止任务陷入本地Optima。在模型对象以及场景点云上进行的综合实验显示了所提出的方法的功效。
translated by 谷歌翻译
近年来,由于机器学习的进步,已经完成了无数关于智能机器人政策的最高级工作。然而,效率低下和缺乏转移能力阻碍了实用应用程序,尤其是在人类机器人协作中,少数快速学习和高灵活性成为一种努力。为了克服这一障碍,我们指的是一个“政策池”,其中包含可以轻松访问和重复使用的预训练技能。通过以灵活的顺序展开必要的技能,采用代理来管理“政策池”,取决于特定于任务的偏爱。可以从一个或几个人类专家示范中自动解释这种偏好。在这个层次结构的环境下,我们的算法能够在迷你招架环境中获得一个稀疏的奖励,多阶段的诀窍,只有一次演示,显示了有可能立即掌握人类教练的复杂机器人技能的潜力。此外,我们算法的先天质量还允许终身学习,使其成为一种多功能的代理。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译